A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 images
نویسندگان
چکیده
Over lands, the cloud detection on remote sensing images is not an easy task, because of the frequent difficulty to distinguish clouds from the underlying landscape, even at a high resolution. Up to now, most high resolution images have been distributed without an associated cloud mask. This situation should change in the near future, thanks to two new satellite missions that will provide optical images combining 3 features : high spatial resolution, high revisit frequency and constant viewing angles. The VENμS (French and Israeli cooperation) mission should be launched in 2012 and the European SENTINEL-2 mission in 2013. Fortunately, two existing satellite missions, FORMOSAT-2 and LANDSAT, enable to simulate the future data of these sensors. Multi-temporal imagery at constant viewing angles provides a new way to discriminate clouded and unclouded pixels, using the relative stability of the earth surface reflectances compared to the quick variations of the reflectance of pixels affected by clouds. In this study, we have used time series of images from FORMOSAT-2 and LANDSAT to develop and test a Multi-Temporal Cloud Detection (MTCD) method. This algorithm combines a detection of a sudden increase of reflectance in the blue wavelength on a pixel by pixel basis, and a test of the linear correlation of pixel neighborhoods taken from couples of images acquired successively. MTCD cloud masks are compared with cloud cover assessments obtained from FORMOSAT2 and LANDSAT data catalogs. The results show that the MTCD method provides a better discrimination of clouded and unclouded pixels than usual methods based on thresholds applied to reflectances or 1
منابع مشابه
A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images
The correction of atmospheric effects is one of the preliminary steps required to make quantitative use of time series of high resolution images from optical remote sensing satellites. An accurate atmospheric correction requires good knowledge of the aerosol optical thickness (AOT) and of the aerosol type. As a first step, this study compares the performances of two kinds of AOT estimation meth...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملInvestigating the applicability of conventional vegetation indices for vegetation change detection in different environmental conditions
Vegetation indices have been developed to characterize and extract the Earth's vegetation cover from space using satellite images. For detection of vegetation changes, usually temporal images are independently analyzed or vegetation index differencing is implemented. A review on previous studies reveal that, in spite of developing several vegetation indices, to extract vegetation cover or veget...
متن کامل